Chapter 10

Memory Testing

Arnaud Virazel
virazel@/lirmm. fr

mailto:virazel@lirmm.fr

i Outline

= Introduction

= Memory modelling

= Failure mechanisms and Fault Modelling
= [est algorithms

= Memory BIST

i Introduction

= Memories (especially SRAM) are at the forefront of
commercial circuit design

= DRAMs are driving technological development in the
semiconductor industry

= Memories are the most used cores in SoCs

Volitile Memory Types

= Dynamic RAM (DRAM)
= Highest density
= Low speed access time (about 10ns)

= Information is stored as the charge of a capacitor and must
be refreshed regularly

= Static RAM (SRAM)
= The fastest (about 1ns)

= The information is stored in latches made with looped
inverters

i Non-Volatile Memory Types

= Read Only Memory (ROM)

= Information is stored by the presence or absence of a transistor
during manufacture

= The information persists even if the circuit is not powered

= Erasable and Programmable Read Only Memory (EPROMSs)
= Programmable in the application
= Fully erasable by applying ultraviolet rays

= Electrically Erasable and Programmable RO (EEPROM,
FLASH)

= Data can be selectively erased by electrical means

i Memory Test

= Memory test must prove that the circuit
under test behaves as it was designed, so it
consists of:

= parametric tests relating to the level of
currents/voltages and delays on the I/O pins of
the circuit

= a functional test
= Modelling of functional faults

i Outline

= Introduction

= Memory modelling

= Failure mechanisms and Fault Modelling
= [est algorithms

= Memory BIST

Address

Address Regq.

\ 4

Column Decoder

Row

Decoder

Functional Model - DRAM

Refreshment

l

Logic of
Refreshment

Write Commands [?

Cell Array
Write Driver
Sense o
Amplifier Data Reg.

Data out Data'in

R/W
CE

Address

Address Regq.

Row

» Column Decoder

Decoder

Cell Array

Functional Model - SRAM

Write Commands [

Sense
Amplifier

Write Driver

Data Regqg.

Data out Data'in

R/W
CE

Address

Address Regq.

Row

» Column Decoder

Decoder

Cell Array

Sense
Amplifier

Functional Model - ROM

Data Regqg.

Data out

CE

i Outline

= Introduction

= Memory modelling

= Failure mechanisms and Fault Modelling
= [est algorithms

= Memory BIST

11

i Functional Faults

Stuck of cell
= Stuck of diver
= Stuck of line
= Stuck of selection line
= Stuck of data line
= Open of data line
= Short of data lines
= Crosstalk of data line

Stuck of address line
Open of address ligne
Short of address line
Open of decoder

Bad access

Multiple access

A cell can be set to 0 and
not to 1

Interaction between cells

:L Reduce Functional Model
=

Address Tefreshment
> C | D d LOgiC Of
Address Reg. onmn Lecoer Refreshment
“) Write Commands [
Row g Cell Array
Decoder
< Write Driver
e _/
Sense
Amplifier Data Reg.

Data out Data'in

R/W
CE

Reduce Functional Model

Address
JL

Address Decoding

ags

Cell Array

ugs

Read/Write Logic

J\/L Data

i Reduce Funtional Faults

s SAF - Stuck-At Fault
s |F = Transition Fault

-

- Single cell

= CF - Coupling Fault } 2 or more cells

= NPSF = Neighbourhood Faults } K cells

i Stuck-at-Fault

= The logic contain of a cell is always stuck-at 0 (SAO0)
or at 1 (SA1)

= [0 detect SAF of a memory cell
= SAO : Write 1 Read 1 (w1l rl)
= SA1 : Write 0 Read 0 (w0 r0)

w1
w0

i Transition Fault

= A memory cell cannot undergoes
a transition 0 — 1 (TFrise) or
a transition 1 — 0 (TFfall)

= [0 detect TF of a memory cell
= TFrise : wO wl rl
=« [Ffall : wl wO rO

w1
w1
wO
w0

i Coupling Faults (2-cell)

= Imply two cells: a victim-cell and an aggressor-cell

= Possible coupling fault models:
= Inversion
« Idempotent
« State coupling
= Short-circuit
= Dynamic coupling

i CF Inversion

= CFin: The content of the victim cell is inverted by a
transition from the aggressor cell

= Depending on the transition (0 — 1 or 1 — 0), there
is two types of CFin:

<T:¢ ><d:¢ >

= To detect CFin between a cell x (victim) and a cell y
(aggressor)

= CFin (y rise — x inverted) : wOx w0y w1y rOx.
« CFin (y fall - x inverted) : wOx wly wOy rOx.

CF Inversion

w1/j

wO/i,w0/j wO/i,w1/j

wO/j

wO/i w/i wO/i wl/i

wO/i,w1/j

wO/i,w0/j
w1/j

w1/i,w0/j w1/i,w1/j

_ wl/i
wO/j

w1/i,w0/j . w1/i,w1/j

i CF Idempotent

= CFid: The victim cell is forced to 0 or 1 is the aggressor-cell
undergoes a transition0 - 1or1 —> 0

= Depending on the transition (0 — 1 or 1 — 0), there is -
types of CFid:
<T:0><d:0><T:1><d:1 >
= T0 detect a CFid between a cell x (victim) and a cell y
(aggressor)
= CFid (y rise - x=0): wlx w0y w1y ri1x
= CFid (y fall > x=1): wOx wly w0y rOx
= CFid (y rise —» x=1): wOx w0y w1y rOx
= CFid (y fall > x=0): wix wly w0y rlx

i CF Idempotent

wO/i,w0/j . wO/i,w1/j

wO/i w1/i wO/i w1/i WO/ WO/ . WO/ wi/j
wO/j
w1/i,wO/jf w1/,w1/f wO/i w1/i
w1/i,w0/j w1/i,w1/j

i CF State Coupling

s CFst: The victim cell is forces to 0 or 1 if the
aggressor cell is in a certain state

= It exists 4-types of CFst :
<0;0 ><0;1 ><1;0><1:;1 >
= To detect a CFst between a cell x (victim) and a cell y
(aggressor)
s CFst (y=0 - x=0): wilx w0y rl1x
s CFst (y=0 —» x=1): wOx w0y rOx
s CFst (y=1 - x=0): wilx wly rlx
= CFst (y=1 - x=1): wOx wly rOx

i CF State Coupling

wO/i,w0/j

wO/i

w1/i,w0/j

w1/j

wO/i,w1/j

w/i

wO/j

wO/i,w1/j

wO/i w1/i w0/i, wOJj

w1/j

wO/i wl/i ' wl/i

w1/i,w1/j

wO/j

w1/i,w0/j w1/i,w1/j

i Pattern Sensitive (PSF)

The victim cell is forced to 0 or 1 if a certain number of neighbouring cells
have a particular configuration

= PSF faults are the most general case of coupling faults

= NPSF coupling faults (Neighbourhood Pattern Sensitive Fault), reduce the
neighbourhood to the cells immediately neighbouring the victim cell (called
base cell)

ha
—r 04—

= Equivalent to a coupling fault with N aggressors (up to 8 adjacent cells
= Difficult to detect

« For each cell, the effect of all possible combinations (28) of adjacent cells must be tested

Neighbourhood Pattern
i Sensitive Fault (NPSF)

n practice two types of faults are used

= Type-1 NPSF with 4 neighbouring cells
= Type-2 NPSF with 8 neighbouring cells

Type-1

Type-2

Neighbourhood Pattern
i Sensitive Fault (NPSF)

= Active NPSF (ANPSF) :

A change of the base-cell due to a transition in the neighbouring cells

Each base-cell must be read in state 0 and in state 1 for all possible changes in the
configuration of neighbouring cells

= Passive NPSF (PNPSF) :

The change of the base-cell is impossible due to a certain configuration of the
neighbouring cells

Each base-cell must be written and read in state 0 and in state 1 for all
permutations of the configurations of neighbouring cells

. Statlc NPSF (SNPSF) :

The content of the base-cell is forced to a certain value due to a certain
configuration of the neighbouring cells

Each base-cell must be read in state 0 and in state 1 for all permutations of the
configurations of neighbouring cells

i Address Decoder Faults - AF

= 4-types of address decoder faults

1. A certain address selects no cell A, o——
2. A certain cell is never accessed
—-o0¢

Cx
3. A certain address selects /
Ay O C

multiple cells

y
4. A certain cell is accessed by o Z/O Cy
multiple addresses A,

i Address Decoder Faults - AF

» 4 combinations of faults for the address decoder

= Fault A: 1+2 A, O ——-o0 ¢,
= Fault B: 1+3 A, O

A, O c,
« Fault C: 2+4

Ay |_O Cy
« Fault D: 3+4 Ax Z/’OCX

Ay O C,

i Data Retention Fault - DRF

A cell is unable to retain its value after a period of time

Fault due for example to a faulty pull-up element in an
SRAM cell

The cell loses its value due to leakage currents

Two different DRFs exist (loss of 1 and loss of 0) and can
be simultaneously present

To detect a DRF - One introduce a delay before reading
the contents of the cell (usually ~ 10-100 ms)

Can be very easily added to any algorithm
The test time increases drastically!

i And many others ...

= Linked faults
= Two or more faults affecting the same cell

= Dyamic Fault

» Faults that require an ordering sequence of
operations

Th :
Advanced Test eory and Practice

Methods for
SRAM 4 AJ.van de Goor

i Outline

Introduction

Memory modelling

Failure mechanisms and Fault Modelling
Test algorithms

Memory BIST

32

i Test Algorithms - Notations

T : indicates that addresses are in an ascending order

! : indicates that addresses are in an descending order
wO : a write 0 at the current address

w1l : a write 1 at the current address

rO : a read at the current address that must returna 0
rl : a read at the current address that must return a 1

(....) : element of the algorithm

£.),0..),...,(..)} : full algorithm

i Test Algorithms - Issues

= A full behavioural test is definitely too long

= Classical and older test methods had
execution times proportional to
= N (zero-one, checkerboard, ...)

= N? et n.log,(n) (walking1/0, ping-pong, Galpat,
Galcol, ...)

i Zero-One Algorithm

= This minimal test consists of writing Os and 1s

in the memory

= Stepl: write 0 in all cells

= Step2: read all cells (0 expected)
= Step3: write 1 in all cells

= Step4: read all cells (1 expected)

= O(n) test

= Coverage
= Does not detect all Afs

= SAFs detected if address decoder is healthy Does not detect
all TFs and CFs

i Checkerboard Algorithm

= The cells are divided into 2 groups

= Stepl: write 1 in the green cells
and 0 in the blue ones

= Step2: read (and verify) all cells

= Step3: write 0 in the green cells
and 1 in the blue ones

= Step4: read (and verify) all cells
= O(n) test

= Coverage
= Does not detect all AFs, TFs and CFs
= SAFs detected if address decoder is healthy
= This test is able to detect short-circuit faults

i Test Application Time

Number of Operations
Size n n.log,n n2
1Mb 0.063 1.26 18.33
16Mb 1.01 24.16 4691.3
256Mb | 16.11 451 1200959.9
2Gb 128.9 3994.4 76861433.7

i March Test

= The test walks (« March ») through the
memory

= The test is composed of March elements
which are represented between ()

= March tests are the simplest tests to detect
SAFs, TFs and CFs

i Example - MATS++

{T(w0); T(rO,w1); 4(r1,w0,r0)}

= 6N operations

s Detect al SAFs
s Detect all Afs
s Detect all TFs

Some March Tests

Name Ref. algorithm

MATS [NAI79] {[(w0);| (rO,w1);[(r1)}

MATS+ | [ABA83] {l (w0); #(rO,w1); §(r1,w0)}
MATS++ | [VAN91] {| (w0); #(rO,w1);{(r1,w0,r0)}

March X | [VAN91] {|(w0); #1(rO,w1);{(r1,w0);| (r0)}
March C- | [MAR82] {| (w0); #(rO,w1); (r1,w0);§(r0O,w1);§(r1,w0);| (r0)}

March A [SUK81] {| (w0); (rO,w1,wO0,wl); f(r1,w0,wl);|(r1,w0,wl,w0);|(ro,wl,w0)}
March Y | [VAN91] {| (w0);#(r0,w1,r1);(r1,w0,r0);| (r0)}

March B [SUK81] {| (w0); (rO,w1,r1,w0,ro,w1); f(r1,w0,w1l); | (r1,w0,wl,w0);

J(rO,w1,w0)}
March GS | [VAN93] {| (w0); (rO,w1,r1,wO,w1);f(r1,w0,ro,w1l); | (r1,w0,wl,w0);
{(rO,w1,r1,w0);Del;| (rO,w1,rl);Del;| (r1,w0,r0)}

March M [MIK96] | {|(wO);(r0,w1,r1,w0);|(r0);(r0,w1);|(r1);f#(r1,w0,ro,w1,);|(r1);{(r1,w0)}
March LR | [VAN96] {l(wO0); §(rO,w1); 1 (r1,w0,r0,w1); f(r1,w0); f(rO,w1,r1,w0,); f1(r0)}
March U [VAN97] {] (w0); #(rO,w1,w0,w1,r1); (r1,w0,w1,w0,r0); | (ro,wl,w0,wl,ri);|

(r1,w0,w1,w0,r0; | (rO)}

March LA | [VAN99] {| (w0); t(rO,w1,r1,w0); +(rO,w1l); | (r1,w0,ro,wl); | (r1,w0)}
March SR | [VANOO] {U (w0);#(rO,w1,r1,w0);f#(r0,r0);); f#(w1),{ (r1,w0,rO,w1); | (ri,ri1)}
March SS |[HAMO02] {| (w0); #(r0,rO,w0,ro,w1); (r1,r1,wi1,r1,w0); | (r0,ro,w0,ro,w1); |

(r1,r1,wi,r1,wo0; | (r0)}

Fault coverage

Fault coverage
March S . | CF #0Op.
Al aF | TE|SF|CRT gy | SC Linked Faults
in | d F
F n
MATS | All | Some 4.n
MATS+ | All | All 5.n
MATS++ | All | All All 6.n
March X | All | All | All | All 6.n
March C- | All | All All | All | All | All | All 10.n
All linked CFids, some CFins linked
March A | All | All | All | All with CFids 15.n
MarchY | All | All All | All All TFs linked with CFins 8.n
All linked CFids, all TFs linked with
March B | All | All All | All CFids or CFins, some CFins linked 17.n
with CFids

i Outline

Introduction

Memory modelling

Failure mechanisms and Fault Modelling
Test algorithms

Memory BIST

42

i BIST Principle

= In BIST (Built-In Self-Test) techniques, test vectors are produced
and the results analysed on the circuit

TPG EE) DUT B Analyzer

= The objective is to solve all or part of the following problems
= poor controllability and poor observability
» test at nominal operating speed
= cost of the ATE
= reduction of test time
= 'transparent” test for designers, etc.

!_L MBIST Principle

Data background Input Data
T

» O
g*@ test/normal MUX

o)

2o { Column decoder
Ol— 1 “TTITTTTTITTIT -]
] o

©

(@]

o Cell array

©

C et
control o

J -

I

l " _Column decoder

Data
comparato
Generator —{comp erK;OI|.(

Output Data

